
 International Journal of Engineering Research
 & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 237

 May- 2015 Volume 2, Issue-3

 ISSN: 2348-4039

"Sharpening Skills.....
 Serving Nation"

SOFTWARE REQUIREMENT GATHERING

Prateek Kumar Singh , Samsad Ali

M.Tech Scholar

CSE Department

AFSET, Dhauj, Faridabad, India

ABSTRACT:

Conceptually, requirements analysis includes three types of activities:

 Eliciting requirements: (the project charter or definition), business process documentation, and stakeholder

interviews. This is sometimes also called requirements gathering.

 Analyzing requirements: determining whether the stated requirements are clear, complete, consistent and

unambiguous, and resolving any apparent conflicts.

 Recording requirements: Requirements may be documented in various forms, usually including a

summary list and may include natural-language documents, use cases, user stories, or process

specifications.

Requirements analysis can be a long and tiring process during which many delicate psychological skills are

involved. New systems change the environment and relationships between people, so it is important to

identify all the stakeholders, take into account all their needs and ensure they understand the implications of

the new systems. Analysts can employ several techniques to elicit the requirements from the customer. These

may include the development of scenarios (represented as user stories in agile methods), the identification of

use cases, the use of workplace observation or ethnography, holding interviews, or focus groups (more aptly

named in this context as requirements workshops, or requirements review sessions) and creating requirements

lists. Prototyping may be used to develop an example system that can be demonstrated to stakeholders.

Where necessary, the analyst will employ a combination of these methods to establish the exact requirements

of the stakeholders, so that a system that meets the business needs is produced. Requirements quality can be

improved through these and other methods

 Visualization. Using tools that promote better understanding of the desired end-product such as

visualization and simulation.

 Consistent use of templates. Producing a consistent set of models and templates to document the

requirements.

 Documenting dependencies. Documenting dependencies and interrelationships among requirements, as

well as any assumptions and congregations.

INTRODUCTION:

 A systems engineering perspective on requirements analysis.

http://en.wikipedia.org/wiki/Requirements_elicitation
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Ethnography
http://en.wikipedia.org/wiki/Interview
http://en.wikipedia.org/wiki/Focus_group
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/File:SE_Process.jpg

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 238

ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

REQUIREMENTS ANALYSIS:

Requirements analysis in systems engineering and software engineering, encompasses those tasks that go into

determining the needs or conditions to meet for a new or altered product, taking account of the possibly

conflicting requirements of the various stakeholders, analyzing, documenting, validating and managing

software or system requirements.

Requirements analysis is critical to the success of a systems or software project. The requirements should be

documented, actionable, measurable, testable, traceable, related to identified business needs or opportunities,

and defined to a level of detail sufficient for system design.

1.1. STAKEHOLDER IDENTIFICATION:

Stakeholder analysis for a discussion of People or organizations (legal entities such as companies, standards

bodies) that have a valid interest in the system. They may be affected by it either directly or indirectly. A

major new emphasis in the 1990s was a focus on the identification of stakeholders. It is increasingly

recognized that stakeholders are not limited to the organization employing the analyst. Other stakeholders

will include:

 Anyone who operates the system (normal and maintenance operators)

 Anyone who benefits from the system (functional, political, financial and social beneficiaries)

 Anyone involved in purchasing or procuring the system. In a mass-market product organization, product

management, marketing and sometimes sales act as surrogate consumers (mass-market customers) to

guide development of the product

 Organizations which regulate aspects of the system (financial, safety, and other regulators)

 People or organizations opposed to the system (negative stakeholders; see also Misuse case)

 Organizations responsible for systems which interface with the system under design

 Those organizations who integrate horizontally with the organization for whom the analyst is designing the

system

1.2. STAKEHOLDER INTERVIEWS:

Stakeholder interviews are a common technique used in requirement analysis. Though they are generally

idiosyncratic in nature and focused upon the perspectives and perceived needs of the stakeholder, often this

perspective deficiency has the general advantage of obtaining a much richer understanding of the

stakeholder's unique business processes, decision-relevant business rules, and perceived needs. Consequently

this technique can serve as a means of obtaining the highly focused knowledge that is often not elicited in

Joint Requirements Development sessions, where the stakeholder's attention is compelled to assume a more

cross-functional context, and the desire to avoid controversy may limit the stakeholders willingness to

contribute. Moreover, the in-person nature of the interviews provides a more relaxed environment where lines

of thought may be explored at length.

1.3. JOINT REQUIREMENTS DEVELOPMENT (JRD) SESSIONS:

Requirements often have cross-functional implications that are unknown to individual stakeholders and often

missed or incompletely defined during stakeholder interviews. These cross-functional implications can be

elicited by conducting JRD sessions in a controlled environment, facilitated by a trained facilitator (Business

Analyst), wherein stakeholders participate in discussions to elicit requirements, analyze their details and

uncover cross-functional implications. A dedicated scribe should be present to document the discussion,

freeing up the Business Analyst to lead the discussion in a direction that generates appropriate requirements

which meet the session objective.

JRD Sessions are analogous to Joint Application Design Sessions. In the former, the sessions elicit

requirements that guide design, whereas the latter elicit the specific design features to be implemented in

satisfaction of elicited requirements.

1.4. CONTRACT-STYLE REQUIREMENT LISTS:

One traditional way of documenting requirements has been contract style requirement lists. In a complex

system such requirements lists can run to hundreds of pages long.

http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Stakeholder_(corporate)
http://en.wikipedia.org/wiki/Stakeholder_analysis
http://en.wikipedia.org/wiki/Misuse_case
http://en.wikipedia.org/wiki/Horizontal_integration
http://en.wikipedia.org/wiki/Facilitator
http://en.wikipedia.org/wiki/Joint_application_design

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 239

ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

An appropriate metaphor would be an extremely long shopping list. Such lists are very much out of favour in

modern analysis; as they have proved spectacularly unsuccessful at achieving their aims; but they are still

seen to this day.

STRENGTHS

 Provides a checklist of requirements.

 Provide a contract between the project sponsor(s) and developers.

 For a large system can provide a high level description from which lower-level requirements can be

derived.

WEAKNESSES

 Such lists can run to hundreds of pages. They are not intended to serve as a reader-friendly description of

the desired application.

 Such requirements lists abstract all the requirements and so there is little context. The Business Analyst

may include context for requirements in accompanying design documentation.

o This abstraction is not intended to describe how the requirements fit or work together.

o The list may not reflect relationships and dependencies between requirements. While a list does make it

easy to prioritize each individual item, removing one item out of context can render an entire use case or

business requirement useless.

o The list doesn't supplant the need to review requirements carefully with stakeholders in order to gain a

better shared understanding of the implications for the design of the desired system / application.

 Simply creating a list does not guarantee its completeness. The Business Analyst must make a good faith

effort to discover and collect a substantially comprehensive list, and rely on stakeholders to point out

missing requirements.

 These lists can create a false sense of mutual understanding between the stakeholders and developers;

Business Analysts are critical to the translation process.

 It is almost impossible to uncover all the functional requirements before the process of development and

testing begins. If these lists are treated as an immutable contract, then requirements that emerge in the

Development process may generate a controversial change request.

1.5. MEASURABLE GOALS:

 Goal modeling Best practices take the composed list of requirements merely as clues and repeatedly ask

"why?" until the actual business purposes are discovered. Stakeholders and developers can then devise tests

to measure what level of each goal has been achieved thus far. Such goals change more slowly than the long

list of specific but unmeasured requirements. Once a small set of critical, measured goals has been

established, rapid prototyping and short iterative development phases may proceed to deliver actual

stakeholder value long before the project is half over.

1.6. PROTOTYPES:

 Software prototyping

A prototype is a computer program that exhibits a part of the properties of another computer program,

allowing users to visualize an application that has not yet been constructed. A popular form of prototype is a

mockup, which helps future users and other stakeholders to get an idea of what the system will look like.

Prototypes make it easier to make design decisions, because aspects of the application can be seen and shared

before the application is built. Major improvements in communication between users and developers were

often seen with the introduction of prototypes. Early views of applications led to fewer changes later and

hence reduced overall costs considerably.Prototypes can be flat diagrams (often referred to as wireframes) or

working applications using synthesized functionality. Wireframes are made in a variety of graphic design

documents, and often remove all color from the design in instances where the final software is expected to

have graphic design applied to it. This helps to prevent confusion as to whether the prototype represents the

final visual look and feel of the application.

http://en.wikipedia.org/wiki/Goal_modeling
http://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Mockup
http://en.wikipedia.org/wiki/Wire-frame_model
http://en.wikipedia.org/wiki/Graphic_design

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 240

ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

1.7. USE CASES:

A use case is a structure for documenting the functional requirements for a system, usually involving

software, whether that is new or being changed. Each use case provides a set of scenarios that convey how

the system should interact with a human user or another system, to achieve a specific business goal. Use

cases typically avoid technical jargon, preferring instead the language of the end-user or domain expert. Use

cases are often co-authored by requirements engineers and stakeholders.Use cases are deceptively simple

tools for describing the behavior of software or systems. A use case contains a textual description of the ways

in which users are intended to work with the software or system. Use cases should not describe internal

workings of the system, nor should they explain how that system will be implemented. Instead, they show the

steps needed to perform a task.

1.8. Requirements specification:

The output of the requirements analysis process is a requirements specification.

TYPES OF REQUIREMENTS:

Requirements are categorized in several ways. The following are common categorizations of requirements

that relate to technical management:

CUSTOMER REQUIREMENTS:

Statements of fact and assumptions that define the expectations of the system in terms of mission objectives,

environment, constraints, and measures of effectiveness and suitability (MOE/MOS). The customers are as

the key customer. Operational requirements will define the basic need and, at a minimum, answer the

questions posed in the following listing:

 Operational distribution or deployment: Where will the system be used?

 Mission profile or scenario: How will the system accomplish its mission objective?

 Performance and related parameters: What are the critical system parameters to accomplish the

mission?

 Utilization environments: How are the various system components to be used?

 Effectiveness requirements: How effective or efficient must the system be in performing its mission?

 Operational life cycle: How long will the system be in use by the user?

 Environment: What environments will the system be expected to operate in an effective manner?

ARCHITECTURAL REQUIREMENTS:

Architectural requirements explain what has to be done by identifying the necessary systems architecture of a

system.

STRUCTURAL REQUIREMENTS:

Structural requirements explain what has to be done by identifying the necessary structure of a system.

BEHAVIORAL REQUIREMENTS:

Behavioral requirements explain what has to be done by identifying the necessary behavior of a system.

FUNCTIONAL REQUIREMENTS:

Functional requirements explain what has to be done by identifying the necessary task, action or activity that

must be accomplished. Functional requirements analysis will be used as the toplevel functions for functional

analysis.

NON-FUNCTIONAL REQUIREMENTS:

Non-functional requirements are requirements that specify criteria that can be used to judge the operation of a

system, rather than specific behaviors.

 PERFORMANCE REQUIREMENTS:

The extent to which a mission or function must be executed; generally measured in terms of quantity, quality,

coverage, timeliness or readiness. During requirements analysis, performance (how well does it have to be

http://en.wikipedia.org/wiki/End-user
http://en.wikipedia.org/wiki/Domain_expert
http://en.wikipedia.org/wiki/Requirements_specification
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Categorization
http://en.wikipedia.org/wiki/Systems_architecture
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Functional_requirement
http://en.wikipedia.org/wiki/Non-functional_requirement

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 241

ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

done) requirements will be interactively developed across all identified functions based on system life cycle

factors; and characterized in terms of the degree of certainty in their estimate, the degree of criticality to

system success, and their relationship to other requirements.

 DESIGN REQUIREMENTS:

The “build to,” “code to,” and “buy to” requirements for products and “how to execute” requirements for

processes expressed in technical data packages and technical manuals.

DERIVED REQUIREMENTS:

Requirements that are implied or transformed from higher-level requirement. For example, a requirement for

long range or high speed may result in a design requirement for low weight.

 ALLOCATED REQUIREMENTS:
A requirement that is established by dividing or otherwise allocating a high-level requirement into multiple

lower-level requirements. Example: A 100-pound item that consists of two subsystems might result in weight

requirements of 70 pounds and 30 pounds for the two lower-level items.

2. REQUIREMENTS ANALYSIS ISSUES:

2.1. STAKEHOLDER ISSUES:

Steve McConnell, in his book Rapid Development, details a number of ways users can inhibit requirements

gathering:

 Users do not understand what they want or users don't have a clear idea of their requirements

 Users will not commit to a set of written requirements

 Users insist on new requirements after the cost and schedule have been fixed

 Communication with users is slow

 Users often do not participate in reviews or are incapable of doing so

 Users are technically unsophisticated

 Users do not understand the development process

 Users do not know about present technology

This may lead to the situation where user requirements keep changing even when system or product

development has been started.

2.2. ENGINEER/DEVELOPER ISSUES:

Possible problems caused by engineers and developers during requirements analysis are:

 Engineer/developer starts coding/implementation immediately before they really understand the whole

requirement from analyst, which usually causes lots of defect fixing or reworking in test/verification

phase.

 Technical personnel and end-users may have different vocabularies. Consequently, they may wrongly

believe they are in perfect agreement until the finished product is supplied.

 Engineers and developers may try to make the requirements fit an existing system or model, rather than

develop a system specific to the needs of the client.

 Analysis may often be carried out by engineers or programmers, rather than personnel with the domain

knowledge to understand a client's needs properly.

2.3. ATTEMPTED SOLUTIONS:

One attempted solution to communications problems has been to employ specialists in business or system

analysis. Techniques introduced in the 1990s like prototyping, Unified Modeling Language (UML), use

cases, and Agile software development are also intended as solutions to problems encountered with previous

method . A new class of application simulation or application definition tools have entered the market. These

tools are designed to bridge the communication gap between business users and the IT organization — and

also to allow applications to be 'test marketed' before any code is produced. The best of these tools offer:

 electronic whiteboards to sketch application flows and test alternatives

http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Application_Simulation_Software
http://en.wikipedia.org/wiki/Electronic_whiteboard

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 242

ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

 ability to capture business logic and data needs

 ability to generate high fidelity prototypes that closely imitate the final application

 interactivity

 capability to add contextual requirements and other comments

 ability for remote and distributed users to run and interact with the simulation.

3. REFERENCES:
1. Sheikh, J. A; Fields, Bob; Duncker, Elke (2011a). Cultural representation by Card Sorting. Ergonomics for All: Celebrating

PPCOE's 20 years of Excellence. Selected Papers of the Pan-Pacific Conference on Ergonomics , 7-10 November 2010,

Kaohsiung, Taiwan CRC Press, 215 -220

2. Sheikh, J. A; Fields, Bob; Duncker, Elke (2010b). Multi-Culture Interaction Design. Advances in Cross-Cultural Decision

Making. CRC Press, 406 -415

3. Sheikh, J. A; Fields, B. and Duncker, Elke (2010a). Cultural based e-Health information system, Presentation at the Health

Libraries Group Conference 2010: 19-20 July. CILIP, Salford Quays, UK.

4. Roling, Neils (1988), Extension Science, Information System in Agricultural Development. Cambridge: Cambridge

University Press.

5. Nonaka, Ikujiro; Takeuchi, Hirotaka (1995): The Knowledge-Creating Company. Oxford University Press, New York

6. Davenport, Thomas H., Prusak, Laurence (1998): Wenn Ihr Unternehmen wüsste, was esalles weiß. Das Praxishandbuch

zum Wissensmanagement. Landsberg/Lech

7. Hess, C. G (2006): Knowledge Management and Knowledge Systems for Rural Development. In: READER: GTZ
Knowledge Management. GTZ Sector Project Knowledge Systems in Rural Development, www.gtz.de/agriservice

8. Tousif ur Rehman, Muhammad Naeem Ahmed Khan Naveed Riaz, “Analysis of requirement Engneeing Processes,

Tools/Techniques and Methodologies” , I.J. Information Technology and Computer Science, 2013

9. Nikita Nahar G, Pujita K wora, Sakthi Kumaresh, “Managing Requirement Elicitation Issues Using Step-Wise Refinement

Model”, IJASCSE, Volume 2 , Issue 5, 2013

10. Aditya, Chand, (2002)“Designing for the Indian rural population: interaction

11. Systems Engineering Fundamentals Defense Acquisition University Press, 2001

12. Kotonya, G. and Sommerville, I. 1998. Requirements Engineering: Processes and Techniques Chichester, UK: John Wiley

and Sons.

 Executive editors: Alain Abran, James W. Moore; editors Pierre Bourque, Robert Dupuis, ed. (March 2005). "Chapter 2: Software

Requirements". Guide to the software engineering body of knowledge (2004). Los Alamitos, CA: IEEE Computer Society Press.
ISBN 0-7695- 2330-7. Retrieved 2007-02-08. "It is widely acknowledged within the software industry that software engineering

projects are critically vulnerable when these activities are performed poorly."

http://www.dau.mil/pubscats/PubsCats/SEFGuide%2001-01.pdf
http://www.computer.org/portal/web/swebok/html/ch2
http://www.computer.org/portal/web/swebok/html/ch2
http://www.computer.org/portal/web/swebok/html/ch2
http://www.swebok.org/
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-2330-7

